
Accelerating performance in software
development for rapid growth

PACE INVADERS

2

		 Introduction

		 A day in the life: Dave’s Fiasco

		 What makes Dave cry at night?

		 Sprints: The wolf in sheep’s clothing

		 Chris’ Dilemma

		 Bottleneck logic

		 Case Study: Lufthansa Technik

		 Intro to Pace

		 Your next step

04

05

09

10

15

17

18

22

27

CO
N

TEN
TS

3

Imagine you lead a dev team...
The current approach to running your
team causes: an increasing backlog,
more and more bugs and the never
ending need for more resources

You founded a software business
and the launch was great, but now
you struggle to scale quickly (without
compromising quality)as extra
processes are required for your
growing company to maintain quality,
and these are stifling speed.

OR

By looking into the current approach to development,

revealing its fundamental flaws and exposing the

damaging consequences it can have on businesses

– this paper presents our preferred solution:

4

INTRODUCTION
In the following pages you’ll read about the dilemma

that affects Software businesses — the twin pressures

of speed and quality!

There are two distinct
methods used to deal
with the complexities of
managing software teams:

Capacity-Centric Approach

This approach proceeds from

the assumption that smaller,

planned iterations of work

are more responsive and

appropriate for faster and better

quality software development.

As a result, planning occurs to

short term due dates based on

capacity (resulting in overloaded

development teams, rushing

to hit targets, and ultimately

reducing quality.)

Bottleneck-Centric Approach

This approach recognizes that

every team has a key individual

or two, that gates the total output

of a team, a bottleneck if you will.

It then follows that a 20%

incremental increase in the

bottleneck’s capacity equals

a 20% increase in the total

output of the team.

If the argument presented

in this paper is correct, the

implications for the industry

are considerable.

The first, is current standard

practice; what we call the

capacity-centric approach;

 Sprints.

The second method, our

recommended approach, is the

bottleneck-centric approach;

 Pace.

If, as argued, the traditional

approach exacerbates the very

problem it attempts to solve, it

follows that this method is taking

a tremendous toll on quality

and speed of development!

Our recommended approach

is one that teams can use to

dramatically improve the quality

and speed of development, while

still retaining the responsiveness

that customers demand.

It has the potential to provide

Software businesses with

a considerable competitive

advantage and ongoing

productivity improvements.

DAVE’S FIASCO
A day in the life:

6

The emergency
is finally dealt with,
but then an urgent
email arrives.

Dave doesn’t know it yet, but he’s
about to have ‘one of those days’...

Sally, one of the product

owners, is on annual leave this

week; however, she neglected

to tell everyone (or just forgot)

that a bug fix was promised

to a major client by Monday.

Unfortunately, it’s now Tuesday

morning and the bug fix wasn’t

planned into the sprint. Fifteen

minutes ago, Dave took a frantic

call from Derek in customer

service, demanding to know

what was going on.

“I have the customer waiting

on the phone right now, and

they’re NOT happy!”

Dave begrudgingly promised

to look into it immediately.

“I have absolutely no idea

what’s going on—it’s Sally’s

Dave has settled in with a cup

of coffee, but before he has a

chance to start catching up on his

Slack messages, he’s interrupted

by an email alert from Derek.

“An urgent feature request has

just come through from sales.

Can you get the design spec’d

today so I can get the signoff

from the customer? Jenny over

in sales promised we could get

the design sorted today. If we

drop the ball on this one, it won’t

look good.”

Dave put down his cup of coffee,

now cooling down, and wished

they would just finish the work

that had been started first. But that

wasn’t the company’s way. Their

unofficial motto was “Just get it

done.” It seemed as though both

his coffee and the Slack messages

were going to have to wait.

job to deal with customers,

not mine,” Dave told Ritika, a

senior developer. “And I don’t

have the capacity to add more

work—I have a backlog of my

own bug fixes that I need to

deal with today.”

“Well, if we don’t expedite

this one, Sally’s gonna rip into

you when she’s back,” Rikita

said. “Also, we could lose the

customer. They’re very upset—

apparently, they expected the

patch to be deployed first thing

this morning. Until Sally gets

back, you’re going to have

to deal with this.”

Dave sighed, imagining the

ticket was not even properly

detailed in the system. “Okay,

let me try and find it.”

12.15pm 1.30pm

He’s been at work less
than an hour, and he’s
already dealing with
an emergency.

“
”

How can I make sure the next Sprint’s planning
session captures all these bug fixes and urgent
features? If only I had a few more developers...

7

8

7.45pm

Dave’s been putting
out fires all day.

5.25pm

Dave has his fingers
crossed; the last half
hour has been free
of interruptions.

He can’t find time to get the urgent

tasks processed, much less the non-

urgent ones. Ritika dropped by his

desk on her way out the door.

“Have you been able to review

Sam’s code yet?” she asked.

“You’ve got to be kidding,” Dave

answered without turning around.

“I’ve had interruption after interruption

since I arrived today. I’ve been putting

out fires left, right, and center. I can’t

find time to get the urgent designs

spec’d, much less do reviews.”

Ritika nodded sympathetically.

“Let me talk to Chris about it.

Maybe there’s something that

can be done to ease the load.”

He’s been able to specify some

urgent designs and actually get some

coding done. If he can keep this up,

he might actually finish work almost

on time today. He’s about to move

to the next thing on his list when the

phone rings, ruining his productive

streak—it’s the accounts department.

“We have a minor invoicing crisis,”

Henry from accounts said brusquely.

“I need your help to sort out a mix-up.”

Dave groaned. He could tell from

Henry’s tone that this would consume

the rest of his afternoon. “Mix-up? Did

the team track their time improperly

again? Never mind…who’s the

customer? I’ll be right there.”

9

WHAT MAKES DAVE
CRY AT NIGHT? The experienced

developers necessary
to do the complex work
are often overloaded
and difficult to find
— it feels like a
downward spiral.

Sadly, what Dave can’t see is that

the way he plans and executes

Sprints is what is behind his pain...

In the software industry Dave

and Chris’ experience – although

fictitious – is more the rule than

the exception.

Almost every software business

has its share of urgent requests,

software disasters and

unprofitably billed work.

Yet, like Chris, owners have little

room in their cashflow to add

devs. Margins are too tight, and

the experienced devs necessary

to process the complex work are

difficult to find – and often costly

to employ.

Of course, both owners and their

staff are extremely diligent in their

attempts to avoid mistakes that

can cripple productivity for days.

Yet almost always – despite their

best attempts to encourage better

teamwork and communication –

crises occur.

At best – as we saw with Dave

– favors get called in and the

work is expedited or apologies

are made over and over.

At worst, you lose a customer

or devs spend too many nights

burning the midnight oil to

fix things!

As a result, development tends

to be characterized by panicked

switching between fixes for

quality and urgent delivery of

new features, and ending up in

a constant conflict between

trying to slow down to get it

right and speed up to keep

customers happy.

SPRINTS:
The wolf in sheep’s clothing

In light of traditional waterfall project management methods,

impeding customer satisfaction, Sprints are meant to improve

agility of software teams through responding to change and

increasing customer collaboration...

11

SPRINTS:
Teams running sprints

get caught in a number

of conflicts that create

a balancing point for

them to either make

a decision on, or

manage regularly.

Let’s start with one which is

often decided early on in their

implementation of SCRUM and

doesn’t change often after that.

Sprint length.

If we make our sprints shorter, we

plan more and more frequently

and spend more time deciding

what to work on, which decreases

the time we can actually spend

‘sprinting’ and writing code. So we

should make sprint lengths longer,

however

the longer the sprint the more

things change during the sprint,

and the more we have wasted

effort on outputs from the team

that aren’t actually useful.

The longer we sprint, the longer

we get to traditional project

management and the issues

that come with that in software

development. The shorter the

sprint the more we get the

benefits of sprinting and the

difficulties that come with it.

Teams that have a ‘process of

ongoing improvement mentality’

end up at 1 week in most cases.

Those that find that a bit too

hard, change back to a more

comfortable 2 weeks.

We’ll get into that more later as

iteration length (sprinting or moving

at pace) is a critical element. For

now let’s look at a few more of

the common sprint dilemmas.

Planning for capacity, or planning

for an outcome. We feel we should

be focusing on an outcome, agile

theory says so, it’s what we’ve

heard the top dogs in the industry

do, but when we try to plan our

work around a specific value

drop we find it doesn’t fit into our

abstractly chosen 2 week deadline

as neatly as we would like.

Who would have thought

that modern day employment

standards, based on the speed

at which the earth rotates,

crossed with a week based

calendar designed over a

thousand years ago, based

on the waxing and waning

of the moon, doesn’t fit with

the time it takes for a team of

people to create a meaningful

chunk of software?

So where does that leave us?

With work that is either jammed

into 2 weeks, expanded to fit

2 weeks, and with a few team

members that aren’t loaded up,

having wasted capacity.

12

”
Our other team members are either unable to get all their
work done, or in their efforts to be efficient, they’re limiting
the output of the expert resources, and therefore the team.

So we decide to plan based on

everyone’s individual capacity,

but in doing that we haven’t

accounted for certain expert

resources in the team who

constrain the team’s output (a lot

more on that later). This means our

other team members are either

unable to get all their

work done, or in their efforts to

be efficient, they’re limiting the

output of the expert resources,

and therefore the team.

This doesn’t even take into

consideration all the Grey Time

the team has in their handovers,

or completion of work in general.

Ultimately we end up with undue

stresses on the team at never

meeting their sprint targets such

that we feel pressure to go back

to planning and revisit the sprint.

This balance will tip, based on

the general ability of the people

involved, to put aside efficiency

metrics to deliver outcomes.

Everyone being busy isn’t a good

thing (there’s a reason emergency

services have spare capacity

and aren’t measured on their

‘productive’ time). In software

this will generally tip towards the

agreed target outcomes in smaller

start ups, and towards simply

‘being busy’ in larger businesses.

Which leads us to the dilemma of

how to handle the work that isn’t

done during the sprint. We could

ensure everyone in the team

has a bad Thursday night every

fortnight, and depending on the

severity of the poor sprint planning

or execution, a bad Wednesday,

Tuesday, Monday night, or even

a ‘what weekend?’ scenario.

Dev’s are far from stupid, and

you don’t need to be particularly

intelligent to know that you can

always gain time from cutting

corners. Whether that means

dropping quality reviews, or just

shortening them to a quick skim,

we get more done on time, but

now we have rework that has

to be dealt with. Whether it be

caught by the team, caught by

the customer as a bug in a few

weeks, or just added to that

technical debt pilling up like

rising ocean temperatures that

we just turn a blind eye to.

If we’ve had enough of all

that rework, we decide to start

rolling some or all unfinished

sprint work into the next sprint.

This is a great way to show that

deadlines don’t mean anything,

they’re just something we have

to pay lip service to because

we’re not really sure how

else to track work progress

against something.

This of course means the team

can slow down, until someone

gets fed up with the slower rate

of progress and decides ‘drop

dead’ means ‘drop dead’ when

it comes to due dates.

Erratic decisions about how to

plan and execute sprint work don’t

get much more erratic than when

the unplanned work tries to be

squeezed into a current sprint.

The team is sprinting away pretty

well, until the shadow of ‘that’

manager appears at the end of

the aisle.

‘That’ manager might be from

sales and has just promised

some great new feature,

customisation, or integration

to land an important new sale.

The manger hopes you’ll see

this from the company’s point of

view, and not think about the fresh

commission check about to land in

their wallet.

‘That’ manager could also be from

customer service, and is just sick

of being yelled at by a certain

customer. Even worse, ‘that’

manager could be the founder

who just wants to make his

dearest, oldest customer happy.

Either way the interruption breaks

any hope of completing the sprint

on time and on spec. Something

will have to give, and the

turbulence generated by putting

down half completed work to be

picked up again at a later date will

never be recovered by the team.

In some teams they have the

freedom to decide the outcome

of this conflict themselves, in

others someone else in the

business makes the decision.

13

” On one hand, shoving work

into the current sprint causes

interruptions, which in turn

increases multitasking, work-in-

progress, and touch-time per task.

On the other hand, not shoving

work into the current sprint means

‘urgent’ requests from ‘important’

customers take too long to action.

This, in turn, raises stress levels of

‘those’ managers, as well as the

resentment levels of the dev team.

This puts the pressure back on

shoving work in, with the dreaded

“just get it done” request.

A similar situation, where the

team has more control, is the

volume of bugs to squish in each

sprint. When more bug fixes are

planned in, perhaps because

the team feels there are too

many outstanding, or perhaps

there were more serious level

tickets raised in the previous

few weeks, it displaces business

as usual, whether that be new

features, customer developments,

or roadmap items. This in turn

slows down progress of product

development.

Slowing of progress is of course

a slippery slope, as there are so

many important things that can chip

away at time spent until we are

making little progress, and

the market is starting to catch

up or leave us behind.

These pressures present

themselves in different

ways for investors, sales and

management, and the result is

a negative impact on roadmap

milestone bonuses. Ultimately

these competing forces lead to

increased time spent on progress

work, and less time on bug fixes.

Fewer bug fixes means there

will be more bugs, and more

bugs make the users mad, which

means the next sprint will be

planned with more bug fixing.

All this work needs to be

managed somehow. A simple

and common way to increase

visibility of work progress and

therefore sprint execution

management is with a task board.

Referred to as Kanban boards by

most software companies, they

will show the planned tasks for

a sprint and their current state

broken across three categories,

‘not started, working, done’.

14

The detail beyond this basic

setup is where the ‘more’ vs ‘less’

dilemma arises for teams. The

boards can have more detailed

information on them, such as

updating estimates once started,

showing which tasks are being

actively worked on, having some

kind of progress vs planned

indication (such as a burndown

chart), and many more options.

The more detailed the boards are,

the more visibility and assistance

in effective sprint execution

they bring, however that comes

with the need for more frequent

updates. At a certain point these

updates become a frustrating

admin burden which take time

and interrupt other activities

that ultimately mean less quality

dev time. This leads teams to

decrease the update frequency

and detail, and in doing that,

decrease visibility; which makes

it harder to deliver at a smooth

consistent pace.

These common dilemmas and

many more take place, some

daily, some monthly, some only

once, in software teams around

the world. They all experience this

balancing act, which we refer to as

a ‘Figure 8 Loop’. Figure 8 Loop is

visual representation of the loop

we get stuck in when trying to do

less of action X, which unwittingly

gives us less Y, which puts

pressure on us to go back and do

more of X, to get more Y, ... and on

and on it goes.

There are a finite number of Figure

8 Loops that are shared by business

in software development. For

example, Figure 8 Loops centered

on process and productivity come

down to, ‘increase organisation

to have the team working on the

best thing they can, vs ‘decrease

organisation to give the team

more time to actually get it done’.

Of course ‘increased organisation’

and ‘decreased organisation’

are in direct conflict, but both

are in pursuit of maximising team

performance. A simple diagram to

show this looks like:

Maximising
team’s

performace

Have the
team working
on the best

thing they can

Give the team
more time to
actually get

it done

Increased
organisation

Decreased
organisation

15

CHRIS’ DILEMMA

16

Remember Dave? If you felt sorry

for him, make sure you also spare

a thought for his boss, Chris. Chris

is the hardworking owner of the

company Xyphyr. He works long

hours, and so does his team. In

almost any other industry, they

would all be reaping rich rewards;

however, endless competition and

never-ending customer demands

constantly pressure his cashflow,

making it a constant headache to

attempt to turn a profit. Chris thinks,

We have no other options — we

either drop prices, or we increase

the feature offering to match what

other companies are doing!

In addition to dealing with

unexpected emergencies, Xyphyr

also has to jump through hoops

to win new customers. Not only

do those new customers want

bug-free software, but they

also demand ever-increasing

amounts of new features and

customization. One customer

demands tailored calendar

integration for its HR processes.

Another wants specialized

email tracking. And yet another

demands accounting integration

from an obscure company.

This not only adds to the cost

of doing business (placing even

more pressure on his margins), it

increases the pressure on Chris’

already overworked development

team. And the frustrating thing

is, no matter how much “hoop

jumping” Chris does, by expediting

a new feature the customer

desperately needs, his clients show

little gratitude. They’ll probably

be back on the phone in a week,

demanding another bug fix.

It’s this kind of persistent problem

that is currently the subject of

a heated discussion between

Chris and Ritika. Everyone else

has finally gone home — even

the cruelly overstretched Dave.

“We need this new feature,” Chris

stressed to Ritika. “Desperately.”

“Chris, I’m telling you —

development has absolutely no

capacity to deliver it. With Sally

away, Dave was completely

overwhelmed today. I’ve been

hoping he would get a chance

to design that new feature for

the customer that Jenny won the

other day, but he spent most of

the day putting out fires. It’s not

going to be much better, even

when Sally gets back.”

“Well, that will change once Jenny

starts losing clients because

we can’t match what InstaHR

or FaceHR are now offering to

every client,” Chris pointed out.

“Discount again?” Ritika

suggested helplessly.

“You’ve seen the P&L for the last six

months—there’s absolutely no fat

left on our bottom line to discount

any further.” Chris sighed. “We have

two tools in our kit—a hammer

and a screwdriver. That’s all.

We have no other options — we

either drop prices or we promise

customizations to get ahead of

what others are doing. And we

can’t do any better on price than

we’re currently doing. If we do

nothing, we’ll bleed the regular

customers who keep us even

marginally profitable. And perhaps

if things go well, we’ll be able to

add more developers to cope with

any increased backlog. But there’s

no way I can afford to add anyone

else right now.”

Ritika was lost for words. She

knew that it was wrong to add yet

more customizations to her already

overworked development team.

Intuitively, she felt that it would

be a disaster — further increasing

already slow delivery times,

adding to the number of critical

bugs and near misses, and leading

to more and more unhappy clients.

And the way reputation tended

to spread online, it would make

it harder to win clients in the

long run, not easier!

She also knew that, even though

Chris understood exactly what she

meant, she would never convince

him that offering the extra features

or customizations was actually

counterproductive. They were

simply stuck between a rock

and a hard place. As she left

for the night, Ritika wondered

how on earth she was going to

explain this to Dave and

the others the next morning…

”
The frustrating thing is, no matter how much “hoop jumping”
Chris does, by expediting a new feature the customer
desperately needs, his clients show little gratitude.

17

”

Most software dev teams have

a couple of top people that are

loaded more so than anyone else

on the team, We refer to them as

‘bottlenecks’. Then there’s a few

more, that are decent devs, but

are limited because so much stuff

has to go through the top two.

Things like tests, reviews, anything

particularly tricky etc.

Then you will have, let’s say, a

couple of fairly junior people.

While it looks like they are

productive, their actual output

can be very low because they

are limited by all the others. The

others still have their own work to

do, and they need to interact with

these more junior resources.

So our top two devs are going

to be fully loaded. In fact if you

visualise it, they’re going to be

overloaded (There probably isn’t

a software team in the world

where these guys or gals work

40-hour weeks). They are nearly

always doing a bit (or a lot) more

than that.

And, they are essentially gating

the productivity of the team as

a whole. This is hard to see

because we get the situation

where, if there isn’t much work on,

people slow down, they find other

things to keep themselves busy,

and generally find ways of looking

and being busy, but busy doesn’t

mean productive.

It can be difficult to see what

junior people are actually working

on. One of the worst scenarios

is juniors finding and working on

extra work that is not what has

been planned into the iteration.

Juniors, like the rest of the team,

want to be productive so they

resist being idle, and will look for

other work to do if none is given

to them. What they don’t take

into account is that, quite often,

this out-of-iteration work further

loads the already overloaded

experienced devs. This extra

work, while it may keep the

juniors busy, may also have to

be reviewed or designed by

the more experienced devs (the

bottlenecks), thereby increasing

their workload.

The bottleneck people can only

do so much work. You are now

wasting some of their time with stuff

that is not necessarily valuable or

relevant, or not the right place or

time for them to be working on it.

So, you start limiting their capacity,

and because of the way the team

works, the moment you limit the

bottlenecks’ capacity, you are

limiting the entire output of the team.

So, the juniors can end up thinking

they are being unproductive, and

usually take the initiative of “I will

go and find something to do.” And

this is one of the major issues with

the way teams plan sprint work.

They plan based on the capacity of

the individuals, as opposed to the

potential output of the team; they

fall into this trap. The junior devs

are woefully underloaded, so we

find stuff to jam into their workload,

but this actually loads up our most

productive resources with work that

is not necessarily the best thing for

the team to be doing at the time.

BOTTLENECK LOGIC
When more work has to go
through the same people that
are already working at, or near
capacity, there is inevitably
going to be an overload.

	 Output is slow

	 Capacity is constrained

	 Stress levels of

the overloaded

individuals are high

In any environment where

you have a mixture of skills,

you are going to have the

most experienced or the

most highly productive

people on the team (you

know who they are!).

AC
TU

AL
 W

O
RK

LO
AD

TEAM

100%

CASE STUDY:
Lufthansa Technik

19

CASE STUDY:
Companies that

use Critical Chain

Project Management

(CCPM) manage

bottlenecks well.

Managing bottlenecks is not

relevant to industries that deal with

one-off projects (which by default

LUFTHANSA TECHNIK
Lufthansa Technik is

the MRO subsidiary of

the Lufthansa Group.

They complete what

are known as ‘checks’

on Aircrafts for both

Lufthansa and many

other airline customers.

There are primarily two types

of checks that the MRO does,

the A checks, and the C checks.

The A checks are more frequent,

smaller checks, similar to getting

an annual service at your car

dealer. C checks however, are

significantly more involved and

require pulling apart the aircraft

and engines to go over it with

a fine tooth comb.

do not suit the iteration approach),

or industries such as manufacturing.

with large, fixed projects, with

known steps completed over and

over again. However, there is an

industry where CCPM

is more comparable to software;

the Aircraft Maintenance, Repair,

and Overhaul (MRO) industry.

MRO is appropriate because the

flow, or task types, are the same

in each project, but the unknown

variability is extremely high. Let’s

look at an example, then figure

out how we can maintain the

principles while scaling down the

project length into iterations which

maintain the benefits we already

have from sprints.

20

In any check, but especially a

C check the variability of what

needs to be done is massive,

and the project teams have

no idea going in how long or

complicated each aircraft check

might be. This is preventative

maintenance, rather, than fixing

something not working, but the

similarities to debugging are there.

An engineer looks into a part of

the aircraft only to find something

more that needs fixing, and

something more after that. To

add to this, not only is the aviation

market growing rapidly, so too

are different requirements from

various new aircraft types

entering the market. (This of

course mimics the software

environment perfectly, with its

rapid new developments).

This is a daily headache for

many MRO project managers,

and leads to firefighting being

the norm in the industry.

Going into a project most MRO

teams will find it hard to know

where the issues are going to

arise, and what bottleneck is

going to slow down each aircraft

in particular. This leads to a lot of

multi tasking among the teams,

from jumping around various

tasks, to even worse, wasting the

use of the highly skilled staff.

Estimating the time work takes

becomes a wild guess as the

Grey Time waste from pick

up/put down, multi tasking, and

waiting on other people destroys

any hope of accurate handover or

completion times.

So what are the rules Lufthansa

Technik uses from CCPM that give

them, what they refer to as the

‘Magic Formula’ which frees them

from all this chaos?

Low work in progress

Lufthansa break work down into

smaller packages, with fewer

tasks in each work section,

contrasting this with the use of

major milestones in traditional

project management. By breaking

the work into smaller packages,

the team can get better visibility

of progress and much faster

handover of tasks. Once this work

is broken down the emphasis in

on quick handovers to the next

team, and quick starts on work

that is handed over.

In any environment with

deadlines or major project points,

people tend to put off completing

the work until they need to (known

as The Student Syndrome). The

way Lufthansa Technik combats

this is in two ways.

Firstly, people are set up to be

ready to receive work and start

it immediately. If someone in a

chain of tasks finishes early but

the next person is not ready to

receive the handover, or start the

next step, the time gain is lost.

If the first person in the chain is

late, and hands over late, there is

clearly loss on the project. This is

true across every step, meaning

that gains are always lost and

losses always accumulate.

Secondly, when planning and

estimating work, the buffers

people naturally build into tasks

are taken out and put at the end

of the project. This is particularity

beneficial when people are

making the most of this extra

time with slick handovers. The

total buffer can then be used to

visualise and manage the project

which is the next major rule.

Buffer management

The buffer is used for tasks that

need it, allowing for things to take

longer than expected and for even

the odd blow out without pushing

the project beyond its overall

time plan. Project Managers then

monitor the status of the buffer

and react to a rising buffer. They

don’t need to look at every task’s

progress but instead focus only

on the tasks which are consuming

the buffer. The team can then give

their own attention to resolve the

difficulties at these steps and act

proactively as tasks increase in

risk, rather than reactively after the

project has gone off the rails.

This new reporting and focusing

method gives new attention

to management reports and

productivity focus shifts away

from ensuring high levels of

individual productivity (which

is the norm in MROs) to focusing

”
By breaking the work into smaller packages,
the team can get better visibility of progress
and much faster handover of tasks.

21

on the lead time instead. The

time an individual takes to

complete work is irrelevant,

the time the whole team takes

to complete the project is

what matters.

All this visibility allows both the

internal team and the external

customer to have a clear and

accurate view of the progress

of the project, so everyone is

kept up to date.

Don’t start what can’t
be finished

The third of the major rules is

to ensure all the pre-requisites

are cleared before any work is

started. This is implemented by

breaking the projects into two

stages. In the first stage, called

Full Kit 1 the team will depannel

the plane for inspection, and go

through a thorough evaluation

of the state of the airframe and

engines. Routine tasks are then

carried out. Then the team preps

for the second stage by getting

Full Kit 2 ready, based on actual

findings for that individual aircraft.

Traditionally MROs would rip into

any non-routine work following the

age old principal of the sooner you

start the sooner you finish. But this

just increases work in progress

and multitasking when the

materials and tools needed aren’t

available. The two stages to the

project allows the team to clear

all the pre-requisites to be able

to complete every task in quick

succession and hand over smoothly

to the next engineer.

How this applies to the
Software industry:

There are two primary similarities

between MRO and Software

development. Firstly, the work is

consistent in the tasks themselves

that are executed. That is, you

can define the steps of tasks for

a standard operations procedure

in an MRO project, and a Software

iteration. And the variability is high

and unknown in both, prior to

work starting.

The second similarity is the

presence of highly skilled people,

being Engineers in MRO and

Software Engineers in Software. As

we know from what we discussed

earlier, any environment with highly

skilled people working in a team

will have natural bottlenecking

by the skilled people.

They are the experienced ones,

so most likely to be loaded with

tasks, if anything goes wrong or

is harder than normal. They are the

ones who will be called on to fix any

issues, and the less experienced

resources will rely on their input in

such a way that giving more work

to the less experienced people

loads up the experienced people

and slows down the whole team.

So like Lufthansa Technik, we need

to move away from a system that

focuses on individual’s inputs, and

focus instead on team output. To

do that we will need to implement

the same rules, although the

mechanics of how the rules function

will be different in our environment.

We need to focus on the flow

of work through the bottleneck,

which is our most experienced

resources. Much like Lufthansa

Technik, there are huge benefits

to reducing work package lengths

and the batching effects that go

with it, moving our focus to buffer

management of very small, but

fast flowing pieces of work. Let’s

look at how we can apply these

principles by changing our

current standard practice

approach of sprints.

INTRO TO PACE
a bottleneck-focused
alternative to Sprints

23

INTRO TO PACE
Shorter length sprints

bring with them a lot of

benefit, however, also

bring more downsides

in other areas.

Essentially the shorter the sprint

is the more ‘agile’ the team is.

This means the team experiences

the extremes of agile, both the

positives and the negatives. What

if we took it to the extreme of a

single-day sprint, as an exercise

to emphasize the impact of the

positives and negatives.

As we reduce the length of the

sprint we increase the accuracy

of estimates, as they are smaller

lengths of time to estimate. We

also don’t have the sequence

issue of estimating future tasks

days or weeks in the future,

which are contingent on the tasks

before them. This causes any

estimating errors to ripple into

future tasks and the negative

effects of this to compound.

With the shortened sprint length

quality steps, such as reviews, can

be introduced more frequently.

When quality steps are delayed

or batched together they are less

effective for two main reasons.

Firstly, people are more attached

to the work they have done when

it has taken them longer time or

more effort to complete, so they

are less likely to make changes

that increase the quality of the

code, whether this is increasing

the likelihood and number of

bugs, or contributing to the

technical debt.

Secondly, the review will be

less thorough as the reviewer

will tend to rush through the

review just wanting to get it done

as the review length increases.

With smaller and more frequent

quality steps comes less rework,

work is more likely to be on the

right track and the rework that

is done is smaller and more

contained. As the length of

the sprint decreases, the

interruptions also decrease.

People are less likely to feel they

need to interrupt the sprint if they

can just put their ‘urgent’ tasks in

tomorrow’s release of work. The

longer the sprint is, the more likely

it is that pushy sales managers, or

founders who are excited to help

out their oldest customer, will want

to, get it done now!

Shorter sprints also allow

for deployments into the code

more frequently and consistently,

which for some is of extremely

high value. Sprints create

much smaller more frequent

due dates for work, when

compared with traditional

project management.

24

The longer the due dates are, the

more the potential damage from

surging is, in the sense that devs

have more time for their work to

get away on them. The longer the

time gets away, the more there is

to catch up on, in a surge of effort

to try and hit the due date.

With those considerations in place,

the negatives of agile will also

impact the team when taken to

the extreme. In fact the impact

must be significant as it outweighs

the positives we’ve just looked

at. I say this because I’m yet to

hear of a sprint that is less than five

business days, and most software

companies have fallen back to

the two-week standard sprint.

Planning becomes far more

difficult for managers as the plan

changes essentially every day,

with backlogs being chipped

away at day by day. This would

give both managers and people

from other parts of the business

relying on development very little

visibility of what will be coming

up in the future even if that

future is only a few days.

Will that bug be fixed by

tomorrow, within our service level

agreement? Teams and devs

already tend to be adverse

to planning, so taking the first

section of each day to plan, in

place of a normal standup, might

encounter significant resistance.

Not to mention that all the devs

would have to be at work at the

same time, which would destroy

the beneficial flexible culture

that many software businesses

promote and enjoy.

Worse than that we all know

how brief meetings blow out to

become anything but, meaning

our planning session could easily

take a very large chunk of the day.

Considering we discussed

bottlenecks in the previous

chapter, it’s important to consider

how they would be affected, or

affect others. With very short

sprints it’s likely that most people,

other than the person doing the

task, will be sitting around waiting

for their turn. While we could go

ahead and load in more tasks,

the bottlenecks will probably limit

what can be done in a day, leaving

others to be doing very little, as

they cannot work on ‘tomorrows’

sprint to get work ready for the

bottlenecks.

Finally the short time frames with

a daily deadline allows for almost

no flexibility in timeframes for

when estimates go to plan

meaning people will come in

early and have nothing left to

do, or more often come in late

on the estimate and the pressure

to skip other steps including

quality steps will be high.

To conclude, the idea of short

sprints brings huge benefits at

even greater costs. But what if

there was a way to get those

benefits without the costs? If

we could plan and execute dev

work in a different way with more

upside and less downside!

Many of the issues brought about

from sprints come from the fact that

work is batched together into a

chunk (normally one or two weeks,

worth), this then has a deadline

to be met. Essentially this is using

traditional project management (i.e.

Waterfall) but in shorter batches or

iterations to reap the benefits of

such. But it’s the hang overs from

this traditional method that are

causing the issues.

Even considering the name, sprint,

hints a strenuous burst of activity

(one that can’t be maintained)

towards a short term goal, that

require us to stop, take a breather,

and the do it all over again. More

appropriate is a smooth and steady

pace which is sustainable, and

doesn’t have deadlines. Deadlines,

which are in place to drive time

management, are largely arbitrary.

Who says a feature set takes 40 or

80 hours for a team to produce just

because that’s how many hours we

decide to work in a day or a week?

Why the focus on deadlines?

Deadlines contribute to two

productivity killers that are built

into human nature. First being

‘Parkinson’s law’ being the adage

that “work expands so as to fill the

time available for its completion”.

The longer we have, the longer

we take to do something. Whether

”
The idea of short sprints brings huge benefits at even greater
costs. What if there was a way to plan and execute dev work
in a different way with more upside and less downside!

25

we slow down or we take more

time to polish our work, this is a

well observed behavioural pattern.

The second being ‘The Student

Syndrome’ which is when people

start tasks as late as possible

and eliminate any of the positive

benefits of buffers built in to

planning and estimates, and put

themselves under unnecessary

pressure and stress.

What if instead of this we had

multiple ‘sprints’ operating at

any time, and as one finishes the

team rolls on to the next one. This

allows the planning of the length

of the sprint to be appropriate

to whatever the workload is for

that sprint. To address the issue I

mentioned earlier of people not

having work to do we would have

more than one sprint taking place

at once. We could have a few

depending on how many people

we have in our team and how

long a sprint naturally ends

up being for us.

What do we do about the

deadlines? They would become

rather difficult to manage in this

system, and as we’ve looked

at already, they cause a lot of

negative behaviours. So why have

deadlines at all? The purpose is

to help ourselves, as individuals,

and managers, to manage

progress against a benchmark.

With no time management,

everything would take a long

time. To replace the deadlines,

we would use the estimated time

plus a ‘time buffer’. It is unrealistic

to think everything we get done

meets estimates and also

unrealistic to think a single time

and date matter to a single piece of

work (except where a commercial

deadline exists externally).

Adding a time buffer and tracking

the progress of time from giving

the iteration to the team, to when

the team starts working on it,

gives an appropriate time-bracket

in which the iteration is likely to

be completed in. A time-bracket

makes more sense than a hard

due date.

Given the multiple iterations

being worked on by the team,

some iterations will take longer

than estimated, and some will

”

26

come in on the lower end of

the estimate, as normal variation

is experienced in software

development.

Over the multiple iterations, these

will average out to be a smooth and

consistent rate of development.

This pace of development is

then used in place of ‘sprints’ for

planning and delivery estimates.

With no due dates to plan iterations

around, work in play, against the

capacity the team has, is used to

determine if more iterations should

be in play for the team or they

have sufficient work to work on.

For example if you have a 5 day

buffer of work to complete iterations

in and there is a person or capability

in the team that has 35 hours’ worth

of work already, any new iteration

could only be given to the team

if there is 5 hours of work or less

for them in the new iteration. This

system maintains an appropriate

number of tasks to keep the team

productive, however not so many

to allow work in progress to build,

or for multi-tasking to occur.

The process of planning the

iterations, estimating, and

assigning the tasks becomes

decoupled from starting on the

iterations. Unlike a sprint, teams

no longer plan the iteration then

immediately begin work on it.

Planning of iterations can take

place whenever best suits the

team. This might be weekly, it

could be individually when a

dev gets, or needs, a break, or,

in some teams we even use a

co-ordinator role to plan iterations

and queue them in front of the

team, ready to go as the capacity

availability becomes available.

Many of the other rituals that teams

use around sprints and SCRUM

exist in Pace. Daily stand-ups are

implemented to discuss the status

of tasks, primarily around the ones

at risk of running over, discussing

what is being done to escalate

them, or if there is a way other

members of the team can help. In

some cases this is just clearing what

they are doing to be ready for the

handover, minimising the downtime

of the iteration and ensuring it is

finished as quickly as possible.

Handovers on a task whose

iteration is in the ‘at risk’ zone

and handovers to a constraint

capability or person should be

performed like a relay race. The

next person should know the

handover is coming and both

have everything they need to

receive it and run with it. This is

another step to eliminate WIP

piling up or people multi tasking.

A team working at Pace has a

steady stream of work being

completed and an equivalent

amount of work being approved

to be in play for the team. Anything

that would once be an interrupt

can now be at the front of the

release queue, to be the next

iteration for the team to work on.

A focus on ‘chunking’ down

iterations to the smallest appropriate

size means the quality steps around

code being written are smaller

and more frequent. In other words,

these smaller quality checks

have a larger impact as people

are more likely to be thorough,

and more willing to make the

necessary changes, because they

haven’t invested as much time

in the code, that may make them

resistant to changing it.

Importantly the workload on

the team is balanced around

the bottlenecks. The bottlenecks

shouldn’t be overloaded by

others’ work that requires their

attention, and other capabilities

can choose non bottleneck

iterations to fill up their available

capacity or just be ready to

start and handover completed

tasks quickly.

27

If Pace resonates for you,
here a few other resources
you may also enjoy.

Pace Invaders is just an introduction to Pace—
a new software development methodology that
builds upon the principles of Agile to turn your
software development pipeline into a highly-
efficient machine for rapid output and growth.

This is Peter Cronin’s

comprehensive book on Pace.

Pace contains the blueprint

for a new way to execute

software development—one

that finally brings planning

and execution under control,

so you can smoothly increase

output without sacrificing code

quality. You’ll discover how to

use Pace—a new system for

software development made up

of 12 counterintuitive but proven

rules that lets you scale without

losing the magic. And you’ll learn

a simple decision-making toolset

for making snap decisions that

harness growth—even in the

face of imperfect information.

Pace is available in hard

copy and Kindle on Amazon

(search Pace by Peter Cronin).

Pace: Accelerating
Performance in
Software Development
for Rapid Growth

PACE WEBSITEWEBINARBOOK

This is a no-cost, no-pressure,

live webinar where you can

start exploring the implications of

the concepts presented in Pace

Invaders. The webinar is facilitated

by Peter Cronin, the author of

Pace Invaders and Pace.

Peter will lead a deep dive into

three underlying principles of Pace,

and their practical application to

software development teams. You’ll

come away with practical ideas that

you can take away and apply for

immediate busines benefits.

You can read more and view

dates at devpaceworkshop.com

PETER’S PRODUCTIVITY BLOG

Peter regularly writes about

the challenges of software

development and how teams

need to reboot performance

improvement discussions so

they can scale at pace.

You can easily follow these

discussions on his blog. Go to

viagointernational.com and click

on the Productivity Blog button.

This website houses everything

related to Pace. Read Peter’s

12 Rules of Pace—a set of

breakthrough and counter intuitive

rules and decision-making tools

that encourages rapid growth

without sacrificing quality.

And watch a collection of video

classes where Peter Cronin

breaks down the rules of Pace

and explains how to implement

them within your software

development step-by-step.

Go to:

pacesoftwaredevelopment.com

PACE EXECUTIVE BRIEFING

If you are in a rush to get a handle

on your software development

problem and fast-track rapid,

sustainable year-on-year scaling,

this may be a fantastic 40-minute

investment of your time.

It will give you a solid grasp

of how the ideas presented

in Pace Invaders apply to your

organisation. Just email us at

sales@viago.com.au and we’ll

work with you to set up a time

that suits.

Developing at Pace

YOUR NEXT STEP

www.viagointernational.com

